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Abstract: I test Steiner’s [1978] model of mathematical explanation
against three alternative model theoretic proofs of the w-categoricity of
dense linear orderings. This case study suggests the need for a broader
heterogeneous view of mathematical explanation incorporating various
modes of structural/syntactic reasoning.

1 Mathematical Explanation

There is now a general consensus among philosophers of mathematics that
mathematical explanations exist. Work by Mancosu, Sandborg, Hafner and
others over the past decade has evidenced a strong concern with the problem
of explanation in both the mathematical community and in a long line of
philosophers dating back to Aristotle.! Even so, pining down exactly what a
mathematical explanation actually is has proved elusive. In contrast with the
philosophy of science, where strong causal and unification traditions strive
to unravel the nature of scientific explanation, discussions of mathematical
explanation remain rather vague.

Two oft-discussed contemporary accounts of mathematical explanation
have been provided by Steiner [1978] and Kitcher [1984], [1989]. Extending
his work on scientific explanation, Kitcher’s global account takes explanation
as theoretical unification, or the linking of mathematical ideas. By contrast,
Steiner’s local account is an attempt to draw a boundary between explanatory
and non-explanatory proofs, and it provides a framework for distinguishing
between them. For Kitcher, a whole mathematical theory or system explains;
for Steiner, explanatoriness is a property of specific mathematical proofs.
While problems with Kitcher’s position have been discussed elsewhere,? I
here test the applicability of Steiner’s model of explanation to actual practice.
In this study from model theory—a branch of mathematical logic studying
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abstract structures—Steiner’s model is brought to bear on three alternative
proofs of a central result in the theory of dense linear orderings. I argue that
on Steiner’s account all three model theoretic proofs explain; yet restricting
ourselves to Steiner’s criteria for explanation ignores salient differences in how
these proofs are able to explain the same mathematical fact. This suggests the
need for a broader view of mathematical explanation incorporating various
modes of structural/syntactic argumentation.

2 w-Categoricity of Dense Linear Orderings

So as not to obscure the central claims of this paper, I will try to simplify or
omit technical material wherever possible, though in each example it should
still be clear from the description how a more formal argument would run.
Nonetheless, while the theorem to be proved is elementary, the variety of
proof techniques presented below requires some work in introducing various
model-theoretic methods.

Formally, a dense linear ordering without endpoints is a set of elements
satisfying the following axioms:

(i) Vo (z < z)

(ii) Vey(z =yVz <yVy<zx)

)
)
(iii) Veyz(z <y ANy <z —x < 2)
(iv) Vey(r <y = 3z(z < 2 Az < y))
)

(v) Va3z(z < z), VzIz(x < 2)

The conditions (i)-(iii) give us a linear ordering, (iv) ensures that the ordered
set is dense (i.e., between any two elements in the ordering, there is an
intermediate element), and (v) ensures that the ordering has no endpoints.
The ‘extension axioms’ (iv) and (v) will play a key role in what follows. The
ordered integers (Z, <) satisfy only (i)-(iii) and (v), the countable ordered
rationals (Q, <) satisfy (i)-(v), and the ordered rationals taken over a closed
interval satisfy only (i)-(iv).
The main theorem under investigation is easily stated:

Theorem 1 DLO is w-categorical.®

In other words, the theory of DLO has a unique countable model (up to iso-
morphism). The term ‘w-categorical’ derives from the wider model-theoretic
project to classify the models of particular theories (up to isomorphism) based
on their cardinality, or size. If two models are isomorphic, they are essentially
the same structure. Though the models may have different domains and the
constants, relations, and functions defined over these domains may have dif-
fering interpretations, each model can be mapped onto the other preserving
all structural features:

31’11 use ‘DLO’ to denote both the theory of dense linear orderings without endpoints
and the structures themselves. The use should be clear from context.



Definition 1 Let A = (n,<") and B = (£,<%) be linear orderings. An
isomorphism is a one-to-one mapping f: A — B such that x <" y if and only

if fr <& fy.

This definition will be particularly important in the discussion of back-and-
forth equivalence in the following subsection.

2.1 Back-and-Forth Equivalence

Before presenting a technical syntactic argument involving quantifier elimina-
tion in §2.2, I begin with a less roundabout purely structural proof that DLO
is w-categorical. Indeed, the original proof of this result allegedly goes back to
Cantor who used back-and-forth methods to show that the elements of any
two countable dense linear orderings without endpoints could be mapped
from one structure to the other and back again. The modern incarnation
of the back-and-forth argument is Fraisse’s notion of 'back-and-forth equiva-
lence,” introduced in the 1950s and playfully presented here, following Hodges
[1997], in terms of Ehrenfeucht-Fraisse games.

The players are Vbelard and Jloise, a twelfth-century Parisian logician and
the niece of a Notre Dame canon. Given two linear orderings A = (n, <")
and B = (£,<¢), Vbelard wants to prove A different from B while Jloise
wants to prove them identical. They take turns choosing elements a; from
A and b; from B at the i'" step of the game, Vbelard freely choosing from
either A or B and Jloise choosing from the opposite structure. At the end of
the game with a (countably) infinite number of steps, denoted EF, (A, B),
sequences of elements @ = {a;} and b = {b;} have been chosen from A and
B respectively with the pair (@, b) designating the final ‘play’ The play (@, b)
is a win for Jloise if there exists an isomorphism f : (@4 + (b)p between

substructures (@)4 and (b)p of A,B such that fa = b. In other words, the
substructures of A and B generated from the elements {a;} and {b;} must
be structurally equivalent.

In this context, Fraisse’s ‘back-and-forth equivalence’ can now be defined
as follows:

Definition 2 Two linear orderings A and B are back-and-forth equivalent,
A~ B, if Jloise can always win the game EF, (A, B).

When Jloise knows of an isomorphism f : A — B, EF, (A, B) is easily won
as she can choose f(a;) from B when Vbelard chooses the corresponding
element a; from A and f~!(b;) when Vbelard picks b;. The game is more
interesting when Jloise knows of no such isomorphism but fortunately there
is a useful criterion for determining exactly when two structures are back-
and-forth equivalent:

Definition 3 A back-and-forth system from A to B is a set of functions J
satisfying the following conditions:

(BF1) each f €J is an isomorphism f: (a)s — (b)p

(BF2) J is non-empty

(BF3)Vf €J and c €A, there is g O f such that g €J and ¢ € dom(g)
(BF4)Vf €J and d €B, there is g O f such that g €J and d € im(g)



Theorem 2 A,B are back-and-forth equivalent if and only if there is a back-
and-forth system from A to B.

The link between back-and-forth equivalence and back-and-forth systems
should hopefully appear somewhat intuitive. To repeat, at each move in
EF,(A, B), VYbelard is busy choosing elements from the linear orderings try-
ing to back Jloise into a corner where she can no longer choose appropriate
corresponding elements in the opposite structures. If Jloise is playing well,
consistently finding matching elements to Vbelard’s choices, then a snapshot
of the game at any given moment would reveal a partial play (a/,b’) such
that there exists an isomorphism f : (a/)4 + (b/)p with fa’ = b/. Such
an isomorphism must exist; if the suborderings (a’)4 and (V')p are struc-
turally different, so too are the full orderings A and B, precluding Jloise
from winning F'F,, (A, B) (so A and B are not back-and-forth equivalent).

A back-and-forth system ensures that at any moment in the countable
game EF,, (A, B), Jloise is on pace to win. (BF1) and (BF2) tell us that Jloise
is not doomed from the very beginning; (BF3), the ‘forth’ step, states that
at each incremental step in the game, if Vbelard chooses any element from
A, Jloise can choose a corresponding structurally equivalent element from B;
(BF4), the ‘back’ step, states that if Vbelard chooses any element from B,
dloise can respond by picking an appropriate element from A. Putting this
all together, the presence of a back-and-forth system between the orderings
A and B ensures Jloise has a winning strategy for EF, (A, B).

Given our discussion of back-and-forth systems as criteria for back-and-
forth equivalence, perhaps the reader has already anticipated the punch line:

Theorem 3 Let A,B be countable linear orderings. Then A,B are isomor-
phic if and only if they are back-and-forth equivalent.

The argument for the right-to-left direction is essentially an inductive one
(the other direction trivially holds as already indicated above). If A,B are
back-and-forth equivalent, there exist isomorphic substructures (@) 4 and (b) g
of A and B and at each incremental step we can expand the substructures
by one element and maintain their structural equivalence. After countably
many steps, we are left with a full-blown isomorphism between A and B.

To prove the w-categoricity of DLO, it must now only be shown that
for countable dense linear orderings A = (n,<") and B = (¢, <) without
endpoints, a back-and-forth system exists between them:

Theorem 4 If A,B are countable dense linear orderings without endpoints,
there exists a back-and-forth system from A to B.

Proof: In the base case, (#) 4, (@) 5 are both empty so (BF2) trivially holds.
Now assume (@)4 = a3 < ... < ay, (b)p = by < ... < b, and there exists an
isomorphism f : (@) +— (b)p with fa = b. We must show that the ‘forth’
step holds. Choose ¢ € A not in {ay,...,a,}. Either ¢ < a;, a; < ¢ for all a;,
or a; < ¢ < aj for some a;,a; € {ai,...,a,}. In the latter case, the density of
B ensures we can find some d € B such that f(a;) < d < f(a;) and we can
then define the extension g 2 f as g = f U {¢,d}. In the previous cases, the



infinite extension of B in both directions ensures we can find d. An analogous
argument works for the ‘back’ step.

Note that in this proof, the extension axioms (iv) and (v) are doing all the
work. No matter which element Vbelard chooses from either structure, since
both A and B are DLO, dloise can always match it.

2.2 Quantifier Elimination

The second proof takes us back to the early days of model theory, the method
of quantifier elimination originating in Tarski’s Warsaw seminar in the late
1920s. The idea is simple but useful: show that relative to a theory T, all
formulae in a first-order language £ (including those with quantifiers) are
equivalent to quantifier-free formulae. In the special cases where quantifier
elimination is successful, the result is a condensed description of all complete
extensions of T, simplifying the study of definable sets on models of T" and
usually leading to completeness and decidability proofs (see Hodges [1997],
p. 60-1, for details).

The traditional approach to quantifier elimination (used here) differs
sharply from the other model-theoretic proofs examined in this paper in that
it is a heavily syntactic approach (model theorists such as Abraham Robinson
later encouraged the use of good structural information about the models of
T, rather than syntax, to show T" admits quantifier elimination). Chang and
Kiesler [1997] write: “the method may be thought of as a direct attack on
a theory” (p. 49). Though these ‘attacks’ are not very difficult, they can be
quite tedious. To tighten the below proof, I follow Marker [2002], p. 66-7,
in taking the completeness of DLO for granted at the onset. An alternative
route taken by Chang and Kiesler (p. 50-4) is to prove DLO admits quantifier
elimination and have completeness fall out as an easy consequence.*

Theorem 5 DLO admits quantifier elimination.

Proof: It must be shown that for every formula ¢ € L, there exists a
quantifier-free ¢ such that DLO F ¢ < ¢ (¢ is equivalent to 1) modulo
DLO). First consider when ¢ is a sentence so as DLO is complete, either
DLO F ¢ or DLO F~ ¢. If DLO F ¢, then DLO + ¢ < z1 = x7; if
DLO F~ ¢, then DLO & ¢ ¢+ 21 < 1,.°

So suppose ¢ is a formula with free variables x1, ..., z,,. We show the set of
atomic formulae ®: {z; = z;,x; < x;} forms an elimination set for the class
of all models of DLO (i.e., ¢ is DLO-equivalent to a Boolean combination
of the formulae in ®). Define an arrangement of x1,...,x, to be the finite
conjunction of formulae ® = 6y A 03 A ... A 6, where each 6; is of the form
x; < xj,, or x; = xj,, for a renumbering of x1,...,x, as x,...,2,,. Each
arrangement gives us an exact ordering of the n free variables. Now when
n = 1, an open formula ¢ is built from ® so since DLO F xy = x1 and

4The proof below combines elements of the proofs given in both Chang and Kiesler
[1997] and Marker [2002].

5Note that 1 = x1 and x1 < 1 can be replaced by T and L if our language contains
these symbols.



DLO Vf 21 < z1 we must have DLO F ¢ (in which case DLO & ¢ <> 21 = 1)
or DLO F~ ¢ (in which case DLO F ¢ < z; < z1). So consider when
n > 1. If DLOU{¢} is inconsistent, DLO F ¢ <> 1 < x1. If DLOU{¢} is
consistent with ¢ open, ¢ must be DLO-equivalent to a disjunction of finitely
many arrangements of x1, ..., z, as this exhausts what we can say about the
variables in ¢ in terms of Boolean combinations of the atomic formulae in
®, i.e., DLO - ¢ <+ \/ ©. As an example, the formula ¢(x1,z9,23) = (21 <
x3) A (2 < x3) is equivalent (mod DLO) to VO = ((x1 = x2) A (22 <
23)) V ((z1 < m2) A (2 < x3)) V (2 < 21) A (21 < 23)) as only these three
possible arrangements of z1, xs, x3 are compatible with ¢.

We can now use this condition to show that every formula in L is DLO-
equivalent to an open formula. Here, it suffices to show that if ¢ is an open
formula, dz,¢ is DLO-equivalent to an open formula. By the above, DLO
F 3z,¢ < 32,/ © so DLO F Jz,¢ + \/Jz,0. For each arrangment O,
let ©* be the restricted arrangement of x1,...,z,_1 obtained by omitting
the literal involving x,. Now the crucial step is this: given the extension
axioms for DLO telling us that an element can be found in any possible
interval over the ordering, 3z,0 is equivalent (mod DLO) to ©*. Thus,
DLO F 3z,¢ < \/ ©* where \/ ©* is a Boolean combination of the formulas
in ® so DLO admits quantifier elimination.

Let us take a moment to review the last step in the proof one more time.
We are given an existence claim Jzx,,© about a particular element z,, in an
ordering of x1, ..., x,. The crucial inference is that if x1,...,z,_1 are ordered
appropriately, the element z,, must exist. The extension axioms in the theory
DLO tell us so: if 3,0 states that x,, is less (greater) than all of 1, ..., 5,1,
such an element exists as DLO does not have endpoints; if 3z,,0 states that
x,, lies between two elements among 1, ..., Zp—1 (i-€., z; < x, < x;), such
an element exists as DLO is dense. The upshot of all this is that if ©* holds,
so does Jx,,© and vice versa.

But we are not yet done. Now that DLO has been shown to admit quan-
tifier elimination, there is the further step of showing DLO is w-categorical.
There are several ways to do this, all of them taking us into the more ab-
stract realms of model theory. One nice link from quantifier elimination
to w-categoricity is provided by a theorem of Engler, Ryll-Nardzewski and
Svenonius (Hodges [1997], p. 171):

Theorem 6 Let L be a countable first-order language and T a complete the-
ory in L which has infinite models. Then the following are equivalent:

(a) Any two countable models of T are isomorphic
(b) For each © = (x1,...,x,), there are only finitely many pairwise non-
equivalent formulae ¢(x) of L mod T

Given that DLO has the property of quantifier elimination, it is trivially
shown that (b) is satisfied (as there are only finitely many distinct possi-
ble arrangements of x1,...,x,) so by (a), DLO is w-categorical. I omit the
proof of the Engeler, Ryll-Nardzewski and Svenonius theorem (which requires
omitting types and the like).



2.3 Fraisse Limits

The third proof puts formal languages aside, returning to pure structural
analysis and introducing another of Fraisse’s contributions to model theory:
the Fraisse limit. Fraisse’s ingenious idea was that given a class of finite
structures having various properties, we can amalgamate (or join) them to-
gether to form a ‘limit’ structure. In the case of linear orderings, the limit of
the class of finite linear orderings is the ordered rationals (Q, <). As Fraisse
limits are unique, the w-categoricity of DLO follows immediately.

Unlike in the previous section, the focus here will be on giving a concise
introduction to the Fraisse limit concept—a truly remarkable way to view
the rationals—rather than providing the skeleton of a proof. Formal proofs of
the existence and uniqueness of Fraisse limits can be found in Hodges [1997],
p- 161-4.

The starting point is a class K of finitely generated structures. With
linear orderings, K is a collection of finite structures. K is called the age of
some structure if K is non-empty and has the following properties:

e Hereditary property (HP): If A € K and B is a finitely generated substruc-
ture of A (i.e., B = (@) 4 for finite @), then B is isomorphic to some structure
in K.

o Joint embedding property (JEP): If A,B € K, then there exists a C € K
and embeddings f : A — C and g : B — C (an embedding from A — C is
an isomophism from A to some substructure of C').

In addition, the class of finite linear orderings has the following important
property:

o Amalgamation property (AP): If AB,C € K ande: A~ Band f: A— C
are embeddings, then there is a D € K and embeddings g : B — D and
h:C — D such that ge = hf.

For example, let K be the class of all finite orderings and consider B = 0 <
1 < 2 < 3 € K. First note that all substructures of B (such as B' =1 <
2 < 3) belong to K (this is an instance of HP). Now let C' =0 < 1/2 < 1.
C' is clearly embeddable in B by letting f(0,1/2,1) = (0, 1,2), illustrating
the JEP. But AP gives us more. As A = 0 < 1 is embeddable in both B
and C by the identity map, AP tells us that there exists some D € K and
an embedding from B — D and C — D that is constant on A. Clearly,
D =0<1/2<1<2<3. By the AP, the countable limit of the class K of
finite orderings must then be a dense linear ordering without endpoints, so
K tends to the rationals rather than, say, the integers or natural numbers.%
This brings us to Fraisse’s Theorem (Hodges [1997], p. 160):

Theorem 7 Let L be a countable language, K a non-empty finite/countable
collection of finitely generated L-structures which has HP, JEP, and AP.
Then there is a unique (up to isomorphism) L-structure D of cardinality
< w such that K is the age of D and D is homogeneous.

6K is still the age of both (Q, <) and (Z, <).



Definition 4 A structure D is homogeneous if every isomorphism between
finitely generated substructures of D extends to an isomorphism from D +— D
(i.e., an automorphism of D).

The structure D in Fraisse’s Theorem is what I, following Hodges, have been
calling the Fraisse limit (it is also known as the ‘universal homogeneous struc-
ture of age K’). As already mentioned, when K is the class of finite order-
ings, D is the ordered rationals. Fraisse’s Theorem thus says that DLO is
w-categorical. Other interesting examples of Fraisse limits are the countable
atomless Boolean algebra (where K is the class of finite Boolean algebras)
and the celebrated ‘random graph’ (where K is the class of all finite graphs).

But what exactly does it mean to say (Q, <) is ‘homogeneous’? Well, if
every isomorphism between substructures of the ordered rationals extends to
an automorphism, then when we take a peek at some local regions of (Q, <)
and they look the same, they really are. Again, the extension axioms play the
central role as the ‘homogeneity’ of the rationals is precisely their density and
lack of endpoints. By contrast, consider an ordering of the natural numbers
(N, <). As only the zero element is a lower bound of all other elements and the
naturals are not dense (this creates a problem as the substructures A’ =0 < 1
and A” = 0 < 2 are isomorphic but any isomorphism between them cannot
be extended to an automorphism of (N, <)), the ordered naturals are not
homogeneous. ‘Homogeneity,” then, appears to be a characterizing property
of the ordered rationals among the family of linear orderings of size < w. But
we are getting slightly ahead of ourselves. Having finished our preparations,
let us turn to Steiner’s account of explanation.

3 Testing Steiner’s Model

In this section, Steiner’s criteria for explanation are applied to the three
model-theoretic proofs. As Steiner’s account has been discussed extensively
in Resnik and Kushner [1987] and Hafner and Mancosu [2005a], my presen-
tation of the actual model will be brief. The focus here is on how Steiner’s
account can be suitably tested against examples from actual mathematical
practice. While other authors have questioned the applicability of Steiner’s
model (more on this below), I will argue that on Steiner’s account all three
proofs of the w-categoricity of DLO explain. However, the inability for
Steiner’s explanation criteria to distinguish between the three alternative
model-theoretic methods indicates something is missing in Steiner’s model.
In §4, I argue that a broader heterogeneous view of mathematical explana-
tion incorporating various modes of structural/syntactic reasoning is needed
to fill this gap.

The goal of Steiner’s [1977] local approach to mathematical explanation is
a clean divide between proofs that explain and those that do not. For Steiner,
the distinctive feature of explanatory proofs is their dependence on a ‘char-
acterizing property’ of a mathematical object, a property “unique to a given
entity or structure within a family or domain of such entities or structures,”
(p. 143) where ‘family’ is taken as primitive. Steiner does acknowledge some



ambiguity in the notion of a characterizing property as a mathematical ob-
ject may be part of multiple families or have several characterizing properties
even in the context of a single domain. However, there must be a clear link
between the characterizing features of object(s) appearing in a mathematical
theorem and the proof that explains this theorem. Steiner writes:

My proposal is that an explanatory proof makes reference to a charac-
terizing property of an entity or structure mentioned in the theorem,
such that from the proof it is evident that the result depends on the
property. It must be evident, that is, that if we substitute in the
proof a different object of the domain, the theorem collapses; more, we
should be able to see as we vary the object how the theorem changes
in response. (p. 143)

A second criterion for explanation enters here as the explanatory proof must
also be generalizable, or ‘deformable.’ By replacing mathematical objects in
a proof with other entities or structures, we obtain new proofs and theorems
dependent on how the relevant characterizing properties of the old and new
entities/structures differ. Explanation is ultimately a relation between a
series of proofs and theorems, rooted in the characterizing properties of the
mathematical objects that inhabit them.

Applying Steiner’s theory (i.e., establishing whether a particular mathe-
matical proof is explanatory) thus requires the following steps:

(S1) identify the mathematical entities or structures mentioned in the theo-
rem and define the family to which they belong

(S2) isolate the characterizing properties of the objects from (S1) on which
the proof depends

(S3) demonstrate that the proof no longer works if other entities or struc-
tures from the same family with differing characterizing properties are
substituted in the proof

(S4) show that by ‘deforming’ the proof (by varying characterizing proper-
ties), we can obtain proofs of related theorems

The steps (S1) and (S2) are prerequisites—with no characterizing properties,
Steiner’s account cannot even get off the ground; (S3) is what Hafner and
Mancosu [2005a] call the ‘dependence test’; (S4) expresses Steiner’s claim
that “it is not, then, the general proof which explains; it is the generalizable
proof” (p. 144).

At first glance, (S1) and (S2) seem innocuous. Proofs discussed by Steiner
of the irrationality of /2 (using the unique prime power expansion of 2),
the Pythagorean theorem (requiring that right triangles can be decomposed
into two similar triangles that are also similar to the whole), the sum of
the first n integers (using symmetric and geometric properties of the sum
142+ ...+ n) and Euler’s identity (proceeding from enumeration properties
of infinite sums and products) suggest that mathematical entities and their
characterizing properties abound in mathematical proofs. Yet this may not
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be the case. Resnik and Kushner [1987] provide two counterexamples, a proof
of the intermediate value theorem in analysis and Henkin’s completeness
proof of first-order logic, where it is unclear which characterizing properties
are involved. In their case study of Pringsheim’s work in the theory of infinite
series, Hafner and Mancosu [2005a] find themselves in a paradoxical situation
trying to find a characterizing property of a completely arbitrary sequence.
Whether these counterexamples can be turned around or not, they indicate
some immediate difficulties in the general applicability of Steiner’s model to
mathematical practice.

Fortunately for us, (S1) and (S2) are easily implemented in the present
case study: the mathematical structure under consideration is a countable
dense linear ordering without endpoints. DLO belongs to the family of all
linear orderings. The three proofs aim to show DLO is unique (up to isomor-
phism) and this is clearly stated in the theorem that ‘DLO is w-categorical’
The characterizing properties of DLO on which all three proofs crucially de-
pend are precisely its countability, density, and lack of endpoints (expressed
by the extension axioms) or alternatively, heeding our earlier discussion of
Fraisse limits, its homogeneity.

But what is most interesting is the distinct ways in which the proofs refer
to and require the characterizing properties of DLO (and hence satisfy the
dependence test (S3)). In the back-and-forth equivalence proof, recall that
Vbelard is trying to show that two linear orderings are different while Jloise
is busy trying to pick elements from the two structures that counterbalance
those chosen by Vbelard. Games aside, we are incrementally building iso-
morphisms between larger and larger finitely generated substructures of the
orderings hoping that, after countably many steps, the union of these partial
maps is a full isomorphism between the structures. As mentioned, the ex-
tension axioms do all the work. The density and lack of endpoints of either
structure ensure that no matter which elements Vbelard chooses, Jloise has
a winning strategy. Put differently, the characterizing properties of DLO en-
sure that we can build a back-and-forth system between any two countable
dense linear orderings without endpoints and DLO is therefore w-categorical.

In the argument from quantifier elimination, the extension axioms are
also essential for the proof to go through. The main step of the proof is
showing the equivalence (mod DLO) of the formulae 32,0 and ©*, i.e., that
a variable x,, can be found in a particular place in a particular arrangement
of x1,...,x,_1. Given the characterizing properties of DLO, the existence
claim Jz,0 must hold so long as 1, ..., x,_1 are ordered appropriately. We
thus conclude that DLO F Jz,0 < ©* and it is a short step further to
show DLO has quantifier elimination. By invoking the theorem of Engler,
Ryll-Nardzewski and Svenonius, DLO is then shown to be w-categorical.

In the proof using Fraisse limits, the role of the characterizing properties
of DLO is even more pronounced (the countability of DLO is particularly im-
portant) as they allow for the characterization of DLO as the Fraisse limit of
the class of finite orderings. As this class has the properties HP, JEP, and AP,
all finite orderings can be amalgamated together to form a countable homoge-
neous structure, the densely ordered rationals (Q, <). The w-categoricity of
DLO then follows immediately from the rationals’ unique role as the Fraisse
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limit of the collection of finite orderings.

It is easily shown that the latter two proofs no longer work if we replace
DLO with other structures in the family of linear orderings having different
characterizing properties (i.e., that are finite/uncountable or for which the
extension axioms do not hold). This is straightforward in the case of Fraisse
limits as countability and homogeneity are defining features of the limit.
Though the class of finite orderings is the age of both the ordered rationals
(Q, <) and integers (Z, <), the amalgamation property AP ensures that the
finite orderings tend to only the dense rationals. The equivalence of Jz,,©
and ©* in the quantifier elimination proof also fails if we consider the theory
T of linear orderings without the extension axioms. Given the arrangement
©*, there is no longer any guarantee that x, can be found in a particular
location in the ordering of x1,...,x,—1. In this case, T F/ 2,0 + ©* so
the theory does not admit quantifier elimination (note that where T is the
theory of dense orderings with endpoints, all formulae in £ can still be shown
T-equivalent to an elimination set ® containing the atomic formulae and the
formula Vz3z(z < x) and/or Vz3z(z < 2)).

The situation is slightly more complicated in the case of back-and-forth
equivalence as back-and-forth methods can be used to show a variety of linear
orderings are isomorphic, not just endpoint-free dense ones. Restricting our
attention to the countable case, a back-and-forth system can be constructed
between two orderings A and B so long as the same extension axioms are
satisfied by both structures. To illustrate a case where back-and-forth equiva-
lence (and hence isomorphism) breaks down, consider a back-and-forth game
where A has an endpoint while B does not. Vbelard can then win the game by
playing the following strategy: first choose the endpoint a € A (without loss
of generality, assume this is a right endpoint) and then after Jloise has chosen
a corresponding element b € B, choose any element in B to the right of b.
As there are no elements in A to the right of the endpoint @, Jloise has lost
the game. In other words, there is no back-and-forth system between A and
B so the structures are not isomorphic. By analogous reasoning, it can also
be shown that dense and non-dense countable orderings are not isomorphic.
Thus, as opposed to the previous proofs where the theorem collapses if any
other ordering besides DLO is substituted in the proof, the argument from
back-and-forth equivalence only fails when the structures A,B compared in
the proof have differing characterizing properties.

With (S1), (S2), and (S3) now satisfied, (S4) can also be implemented,
i.e., the proofs are generalizable by varying the characterizing properties of
the structures mentioned in them. By applying the concept of a Fraisse limit
to other families of structures besides linear orderings, we obtain similar re-
sults: looking at the collection of all finitely generated Boolean algebras, the
unique Fraisse limit is the countable atomless Boolean algebra whose ‘homo-
geneity’ is precisely its property of having no non-zero minimal elements (the
theory of atomless Boolean algebras consists of the axioms for distributive
lattices together with the extension axiom Va(zr #y — Jy(0 < y Ay < x)));
for the class of all finite graphs, the unique Fraisse limit is the ‘random graph’
with the interesting property that for any two finite disjoint sets X and Y
of vertices in the random graph, there is an element z¢ X UY connected
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(by an edge) to every vertex in X and no vertex in Y (the theory of the
random graph consists of the regular graph axioms together with the exten-
sion axiom V1.2, Vy1..yn (A A @i # y; — F2(A(R(xi, 2)A ~ R(y;, 2)))))."
But for our present purposes, the main point here is that by holding the
proof-idea (Fraisse limits) constant and substituting other structures for DLO
with differing characterizing properties (though they are all necessarily exten-
sion properties), we obtain the new related theorems ‘the theory of atomless
Boolean algebras is w-categorical’” and ‘the theory of the random graph is
w-categorical.’

The method of quantifier elimination has also been successfully applied
to other theories besides DLO, including the theory of Abelian groups, Pres-
burger Arithmetic and the theories of real and algebraically closed fields
(RCF/ACF). A high point for model theory, Tarski used quantifier elimina-
tion to show the decidability of RCF in 1948. Unfortunately, these examples
do not really help our case as to satisfy (S4), we are looking for examples
of theories where quantifier elimination is central to a proof that any count-
able models of the theory are isomorphic (recall that in addition to the proof
that DLO has quantifier elimination, the move to w-categoricity still required
the Engler, Ryll-Nardzewski and Svenonius theorem). Fortunately such ex-
amples do exist: the theory of atomless Boolean algebras, the theory of
infinite Abelian groups with finite exponent, the theory of an equivalence
relation with infinitely many infinite classes, to name a few. By applying the
original proof strategy to these theories (whose models have differing char-
acterizing properties), we can show the theories are w-categorical. Though
quantifier elimination still does not apply to the majority of interesting math-
ematical theories, and not all theories admitting quantifier elimination are
w-categorical, these examples are sufficient to ground (S4), indicating how
we can obtain related theorems through deformation of the quantifier elimi-
nation proof.

Of the three proofs, the first using back-and-forth equivalence is arguably
the most deformable as back-and-forth techniques can be applied to show
isomorphism both within the (non-DLO) family of linear orderings and in
other classes of structures. As indicated earlier, only slight changes to the
proof given in this paper result in new proofs that the theory of dense lin-
ear orderings with two endpoints is w-categorical, the theory of dense linear
orderings with right endpoints is w-categorical, and so on. Other deforma-
tions of the back-and-forth proof also show that more diverse structures are
isomorphic. Here is an example (adapted from Hodges [1997], p. 79-80):

Theorem 8 The theory of atomless Boolean algebras is w-categorical

Proof: In the base case, where A and B are Boolean algebras with only
zero and one elements, let f(04) = Op and f(14) = 1p; so (BF2) holds.
Now consider (@)4 with atoms ay,...,a, and (b)p with atoms by, ..., b, and
assume there exists an isomorphism f : (@) 4 +— (b)p with fa = b. We must

show that the ‘forth’ step holds. Choose ¢ € A not in {aq,...,a,}. Then

"Interestingly, the random graph can be used to study the asymptotic properties of
random finite graphs, bridging graph theory with probability theory. See Marker [2002],
p. 45-6, for a nice presentation of the remarkable Zero-One Law for Graphs.
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the structural identity (what Hodges calls ‘isomorphism type’) of ¢ over (@) 4
is determined by, for each atom a;, whether cAa; equals a;, 0 or neither.
cAa; is the greatest lower bound of ¢ and a; so, intuitively, the split concerns
whether ¢ lies above a;, beside a; or below a;. Now as B is atomless, we
can find some d € B such that d A f(a;) = f(a;),0 or neither just in case
¢\ a; = a;,0 or neither respectively and we can then define the extension
g2 fasg=fU{cd}. An analogous argument works for the ‘back’ step.

As with the DLO proof, the extension axiom does all the work, though this
time the extension axiom concerns the absence of non-zero generators (or
atoms) in certain special Boolean algebras, a property closely resembling
but distinct from the density of certain special linear orderings. But while
the characterizing properties on which the proofs depend have shifted, the
proof-idea remains unaltered.

Let us now summarize our findings regarding the three model-theoretic
proofs that all countable dense linear orderings are isomorphic. Each proof
refers to and crucially depends on the countability and homogeneity of DLO.
If other linear orderings are substituted in the proof, the theorem collapses
(with some exceptions in the back-and-forth case). Nonetheless, by examin-
ing structures in other classes with similar but distinct characteristic proper-
ties (reflected in the extension axioms in the theories of which these structures
are models) while holding the various proof-ideas constant, we obtain new
proofs of closely related theorems, such as the uniqueness (up to isomor-
phism) of countable atomless Boolean algebras. In short, as all three model
theoretic proofs satisfy (S1)-(S4), I conclude that, on Steiner’s account, all
three proofs explain why DLO is w-categorical.

Before reflecting on this further, one more issue needs to be cleared up.
The reader with some familiarity with model theory may wonder whether we
are warranted in even calling the above proofs three distinct proofs at all.
For there is much overlap between the various model theoretic methods not
explicitly mentioned in the presentation above: the proof of the uniqueness
of Fraisse limits, crucial for linking the discussion of Fraisse limits to the
w-categoricity of DLO, is essentially a back-and-forth argument; a theory T
has quantifier elimination if and only if Ty, the set of universal consequences
of T, has the amalgamation property (see Hodges [1997], p. 203, for proof);
Ehrenfeucht-Fraisse games can be used to find elimination sets (ibid, p. 85-9).
But I have no desire to start building perimeter fences. I think that there
is enough variation in the three model-theoretic arguments to make clear
that they contribute to proving the same mathematical fact in distinct and
interesting ways, regardless of whether the boundaries between them blur.

4 Structural and Syntactic Methods

In this section, I do mot intend to give my own definitive account of math-
ematical explanation. I do not argue that Steiner’s account of explanation
should be accepted under the proviso that further work be done to clarify
exactly how proofs depend on the characterizing properties of mathemati-
cal objects. Rather, I argue only that Steiner’s account falls short (I take a
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more positive line on mathematical explanation in §5). Resnik/Kushner and
Hafner/Mancosu provide examples of proofs that explain but fail to meet
Steiner’s criteria to show “Steiner’s account seems bound to undergenerate,
i.e., it seems thus blocked from fully capturing the intuitive notion of ex-
planatory proof operative in mathematical practice.” (Hafner and Mancosu
[2005a], p. 237) I claim that Steiner’s account undergenerates in another
important way: though all three of our model-theoretic proofs meet Steiner’s
explanation criteria, each proof explains the w-categoricity of dense linear
orderings in its own distinct way and an account of explanation that simply
seeks to identify characterizing properties ignores the complex and interest-
ing roles such properties play in mathematicians’ attempts to convince others
of this or that mathematical claim (a reminder here that I am working under
the assumption that these proof explain precisely because they meet Steiner’s
criteria). Steiner’s model does not fully capture the variety of explanatory
methods operative in mathematical practice.

How exactly does Steiner’s account fall short? Answering this question
requires a closer look at how the model-theoretic proofs in this paper explain.
The back-and-forth argument explains by introducing a new equivalence re-
lation between two structures A and B. Like the notion of an isomorphism,
the relation of back-and-forth equivalence is a structural one. Yet ultimately
the focus is not so much on the full structures A and B themselves but on the
individual elements that comprise the structures. If A,B are back-and-forth
equivalent, each element in either A or B can be mapped to a corresponding
structurally equivalent element in the opposite structure and this step can
be implemented countably many times. The notion of back-and-forth equiv-
alence thus provides a local view of structural identity. Harnessing this local
view, we come to understand that DLO is w-categorical by a ground-level
inductive argument: as we can get isomorphisms to work between incremen-
tally larger subsets of elements in dense linear orderings (up to w), we can
get an isomorphism to work between the full structures.

The Fraisse limit proof also explains the uniqueness (up to isomorphism)
of DLO by introducing a new structural concept. Fraisse taught us that in
certain classes of structures, there exists a special universal structure, the
countable limit obtained by amalgamating all the structures in the class.
Such structures have the nice property of homogeneity, a strong symmetry
property that manifests itself in different forms in different Fraisse limits,
from the unusual connectivity of the random graph, the density near zero
of the countable atomless Boolean algebra and in the case of the ordered
rationals, their density everywhere and lack of endpoints. However, unlike
in the back-and-forth proof where the new structural concept provides us
with a general technique for showing isomorphism, the Fraisse limit proof is
essentially just the realization that (Q, <) holds a special place in the family
of linear orderings. As Fraisse limits are unique for each class, we come to
understand that any countable model of DLO must be isomorphic to the
ordered rationals.

While the characterizing properties of (Q, <) (i.e., its countability and
homogeneity) underpin both the back-and-forth and Fraisse limit proofs,
what is really significant and interesting is how these proofs exploit these
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properties. On the one hand, we saw that the characterizing properties of
two dense linear orderings without endpoints facilitate the construction of a
system of mappings between them. On the other, we saw that these prop-
erties are features of a special limit structure among the linear orderings.
Both proofs are driven by the introduction of new structural elements which
either function as an instrument for investigating the theory of linear order-
ings (back-and-forth) or sharpen our understanding of how models of this
theory are intimately related (in Fraisse’s terminology, some orderings are
‘younger’ or ‘older’ than others). This method of structural argumentation—
proving mathematical facts by introducing and manipulating new structural
concepts—is not unique to model theory either. In analysis, there are Cauchy
sequences, metric spaces and coverings; in algebra, we decompose groups into
cosets, examine eigenspaces of a matrix and so on. Mathematics is saturated
with further examples.

In contrast to the structural proofs, the quantifier elimination argument
proceeds at the syntactic level, tying results from the formal theory of DLO
to actual orderings. The proof may seem a somewhat unusual one, deriv-
ing the structural result that any countable dense linear ordering without
endpoints is isomorphic to the ordered rationals from the mere fact that the
syntax needed to express the theory DLO need not include quantifiers. But
model theorists Chang and Kiesler certainly feel that such syntactic methods
can explain, writing in their discussion of preservation phenomena (where the
syntactic form of a theory T' can indicate whether T is preserved under sub-
models, unions of chains or homomorphisms): “It is a rather remarkable fact
that these preservation phenomena can be explained just by the syntactic
form of the axioms [of a theory].” (XXX) Nonetheless, I feel that characteriz-
ing the quantifier elimination proof as entirely syntactic would be somewhat
misleading as several steps needed in proving DLO admits quantifier elimi-
nation, such as recognizing every open formula as DLO-equivalent to a finite
disjunction of arrangements and showing 3z,0 is equivalent (mod DLO) to
©*, appeal to structural knowledge of DLO. The quantifier elimination proof
is rather an interplay between syntactic and structural reasoning (though I
feel the heavy reliance on formal language still warrants the claim that this
is a ‘syntactic argument’) which here operates to explain the w-categoricity
of DLO. Note that Henkin’s completeness proof of first-order logic, proposed
by Resnik and Kushner [1987] as a counterexample to Steiner’s model, also
falls under this category.

The three model-theoretic proofs presented in this paper thus explain the
same mathematical fact in the theory of linear orderings in diverse ways.
In the proofs using back-and-forth equivalence and Fraisse limits, the w-
categoricity of DLO is explained through structural arguments driven by the
introduction of new structural relations and concepts. In the quantifier elim-
ination proof, the same result is explained by analyzing the deductive conse-
quences of the formal theory DLO. An account of mathematical explanation
that simply tells us that these proofs explain, full stop, without flushing out
the structural and syntactic methods catalyzing these explanations is unsat-
isfactory. Fuven if we accept that the distinctive feature of explanatory proofs
is their dependence on the characterizing properties of mathematical objects,
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Steiner’s model still fails us because while it tells us characterizing properties
are all-important, it ignores the variety of methods by which these properties
become part of mathematical practice.

5 Final Remarks

If forced to give a quick answer to the question ‘What is a mathematical
explanation?,” my answer would be this: a mathematical explanation is any
piece of mathematical research, formal proof or otherwise, that raises un-
derstanding (instead of just knowledge). Admittedly, I have replaced one
vague notion—mathematical explanation—with another—mathematical un-
derstanding. But without getting into the details, recent research by Jeremy
Avigad (forthcoming) brings mathematical understanding down to earth,
construing understanding as the possession of certain abilities such as, in
the case of group theory, being able to form a quotient group, list the finite
groups of order less than 12 and so on.

Accompanying this suggested shift in focus from mathematical explana-
tion to mathematical understanding is a move away from explanatory objects,
such as explanatory/non-explanatory proofs (Steiner) or unified/disjoint the-
ories (Kitcher), towards the variety of mathematical methods that help us
understand. We might still say that one proof explains while another does
not, but this is because one proof instantiates an explanatory method, or
mode of reasoning that leads to understanding, while the other proof sim-
ply leads us to know that a certain result holds. In this case study from
model theory, we saw examples of such explanatory methods in the introduc-
tion/manipulation of new structural concepts in the back-and-forth equiva-
lence and Fraisse limits proofs and the syntactic reasoning that showed that
DLO admits quantifier elimination.

I am certainly not the only author to stress the heterogeneity of math-
ematical methods. Hafner and Mancosu [2005a] write: “We maintain that
mathematical explanations are heterogeneous...the variety of mathematical
explanations cannot be easily reduced to a single model” (p. 222) In a recent
talk at UC Berkeley, the logician Dana Scott also expressed his doubts that
the philosophy of mathematics, with such tidy accounts as Lakatos’ Proofs
and Refutations, has been able to accurately describe mathematical prac-
tice since “mathematicians are busy getting their hands dirty.” Whether one
agrees that mathematical explanations are best understood via mathemati-
cal understanding or not, I have tried to make the case here that accounts
of mathematical explanation, such as Steiner’s, that proport to pin down
the precise nature of mathematical explanation while ignoring the diversity
of methods operative in the mathematical community are sweeping the dirt
under the carpet, failing to provide an accurate picture of how real-life math-
ematicians explain mathematical facts.
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